
LMo6B1
Techniques de programmation

Chapitre 7
Graphes et structures de données

année 2021/2022
université de Bourgogne

Chapitre 7 : graphes et structures de
données

I.Data structures
It is a good practice to name your variables, classes, functions using names in En-

glish. Your code will be read by people with different backgrounds and also by people
who don’t speak French, be kind to them.

1.Using lists to represent non-ordered sets
Consider a set of items : {a, b, c, d, e, f}. This is an abstract data structure and can

be implemented in a programming language in many different ways. For example :
• A list : [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
• A tree : [’a’, [’b’, ’c’], [’d’, [’e’, ’f’]]]
The choice of implementation will be different depending on the task. Specifically,

the cost, which is expressed as the number of operations, is different depending on the
way how data is stored.

We shall define a class implementing a set by using a list.

class custom_set:
def __init__(self, cont=[]):

self.cont = cont

def __repr__(self):
return str(self.cont)

Exercice 1a. Implement a function that inserts an element in the given list.

def insert(S, elem):
S.cont.append(.....)

Test your function :

E = custom_set([])
insert(E, 1)
insert(E, 2)
insert(E, 3)
print(E)

What is the cost of insertion of one element in a list of length n ?

Exercice 1b. Implement and test a function that returns the position of the element
in the set if it is present, or −1 otherwise.

def search(S, elem):
....

What is the cost of checking whether an element belongs to a list of length n ? (In
worst case).

Exercice 1c. Implement your function that deletes an element in a list if it is present
in the list (otherwise does nothing).

def delete(S, elem):
....

What is the cost of deletion of one element in a list of length n ?
Now, suppose that we require that a list is always sorted at the end of each operation.

This requirement introduces a new data structure : a sorted list. During the insertion,
we have to put a new element in the specific position, which is not necessarily at the
end of the list. This position can be efficiently found by dividing the list into two parts
and comparing the new element with the middle of the array in order to choose the
left half or the right half.

Exercice 2. Implement and maintain a class that maintains a sorted list. Let us
assume that a list is always initialised as an empty list, and we can only add or delete
element one by one. What is the cost of all the operations mentioned in Exercise 1 ?

class sorted_set:
def __init__(self):

self.cont = []
def insert(self, elem):

......
def search(self, elem):

......
def delete(self, elem):

pos = self.search(elem)
if pos == -1:

return
......

page 1/5

LMo6B1
Techniques de programmation

Chapitre 7
Graphes et structures de données

année 2021/2022
université de Bourgogne

2.Binary search tree
It is possible to implement a data structure which makes insertion of one element

slower, but accelerates the search and deletion of an element.

Definition. A binary search tree is a data structure that is organised like a rooted
binary tree, containing keys in its nodes. If x is the key of the root, then x is greater
than all the keys of the left subtree and is smaller than all the keys of the right subtree.
Both, the left and the right subtrees, are binary search trees.

Example. Let us describe a binary search tree with 7 elements {1, 2, . . . , 7}. If we
set its root to 4, then its Python representation will be [4, [...], [...]], where
the dots contain the left and right subtrees. Here is a complete example :

[4,
[2, [1], [3]],
[5, [7, [6]]]

]

Verify that this tree is indeed a binary search tree.

Exercice 3. Show that the number of operations required to insert a new element
or to search for a new element is O(h), where h is the height of the tree. Implement
and test a class of binary search trees (shortly BST), where each element is a tuple
(key, value) containing a key and some additional useful information (value) with
insertion, deletion, and search of an element.

class bst:
def __init__(self):

......

The function that searches an element, should return its value if the element is present
in a tree, or None if not.

Useful to know. In the worst-case scenario, a binary search tree has a form of a
line, and the complexity of search and insertion becomes of order n. However, it can
be mathematically proven that if such tree is formed uniformly at random, then its
height is O(log n). Furthermore, there exist other, more sophisticated structures that
guarantee O(log n) complexity in worst cases, but it takes more time to explain how
they function.

3.Python’s set and dictionary.
A dictionary is a database, or a set of elements, where every element can be searched

by a key, and contains additional value. Binary search trees are one of the numerous
possible implementations of dictionary. The Python language has its own implemen-
tation of dictionary, and for the purpose of this exercise, we are not very interested in
how exactly it works. The only thing we know is that its implementation is efficient.

Exercice 4a. Create your first set and dictionary and print them :

instruments = {’piano’, ’drum’, ’violin’, ’flute’}
prime_factorisations = {

6: (2, 3),
2: (2,),
15: (3, 5),
2022: (2, 3, 337)

}

Exercice 4b. Familiarise yourself with how sets and dictionaries work by accessing
their elements. By using autocomplete, observe other available methods.

print(’drum’ in instruments)
print(’guitar’ in instruments)
print(7 in prime_factorisations)
print(prime_factorisations[6])
print(prime_factorisations.pop(6))
print(prime_factorisations)
prime_factorisation[14] = (2, 7)
print(prime_factorisations)
instruments.add(’guitar’)
instruments.remove(’piano’)
print(instruments)

Note that sets and dictionaries support generators too :
print({i: i**2 for i in range(5)})

Useful to know. If you implement your own class, you can overload the operator
“in” according to your needs :

MyClass.__contains__(self, item)

page 2/5

LMo6B1
Techniques de programmation

Chapitre 7
Graphes et structures de données

année 2021/2022
université de Bourgogne

II.Excursions on graphs
1.A notion of graph

A graph is an abstract data structure, just like a set, and again, it can be imple-
mented in many different ways, depending on the specific problem that you need to
solve. Depending on the implementation, some of the operations will be faster, and
some will be slower.

We will work with two types of graphs : simple and directed. Variations also include
multigraphs and directed multigraphs.

Informal definition. A graph is a set of points connected with lines that are called
edges. A graph is directed if its edges have directions. A multigraph is a graph where
loops are allowed and multiple edges between two vertices are allowed.

Formal definition. A graph is a pair (V,E), where E ⊂ {{x, y} | x, y ∈ V, x 6= y}.
A directed graph is a pair (V,E), where E ⊂ {(x, y) | x, y ∈ V, x 6= y}. A multigraph
is a pair (V,E), where E = (e1, e2, . . . , em) and ei ∈ {{x, y} | x, y ∈ V }.

Exercice 5. How many different graphs with n vertices are there ? How many dif-
ferent graphs with n vertices and m edges ? How many digraphs ?

2.Representations of graphs
There are three main approaches to storing graphs in computer memory.
• Adjacency matrix. If a graph has n vertices, then it is stored as a matrix A of

size n×n with zeros and ones. If Aij = 0 then there is no edges between vertices
i and j, otherwise Aij = 1.

• Incidence matrix. If a graph has n vertices and m edges, then it is stored as
a matrix A of size n×m, and we have Aij = 1 if and only if jth edge is incident
to ith vertex.

• Adjacency list. For each vertex v in graph, there is a set of vertices that are
connected to v. A graph is stored as a collection of these sets.

These approaches can be adapted to directed graphs and multigraphs. The most pre-
ferred approach is the adjacency list because it reduces the cost of keeping additional
zeroes if the graph does not have too many edges.

Exercice 6. For a graph with a given adjacency matrix,
0 0 1 1
0 0 1 0
1 1 0 1
1 0 1 0

write its incidence matrix and adjacency list. Implement a function that converts an
incidence matrix into an adjacency list and check your computations :

def incidence_mat_to_adjacency_list(mat):
"""This function converts an incidence matrix
to adjacency list
"""
n = len(mat)
m = len(mat[0])
Create a list of empty sets for each vertex
result = [set([]) for _ in range(n)]
...... # fill in the elements of ‘result‘
return result

Useful to know. Similarly to sets and dictionaries, you can imagine that the vertices
and edges of graphs are the keys and they can carry some additional information, for
example, edge length. A path in a graph is a sequence of vertices connected by edges. If
the edges have lenghts, then the length of a path is a sum of the lengths of edges. One
can search, for example, for a path with minimal length between two given vertices,
just like you are searching for the fastest route in Google Maps.

3.Depth-first search (dfs)
Let us solve the following problem. Given a graph as an input, check if there is a

path between two vertices of a graph. This is equivalent to checking whether two nodes
x and y are in the same connected component.

This problem can be solved by using depth-first search algorithm. This algorithm
keeps track of whether a node is already visited or not. Initially, all the nodes are
unvisited. Then, we visit the vertex x and recursively launch the search to all of its
neighbors. Each time we check the list of all the neighbors and visit all the unvisited
nodes, recursively, one by one. When the algorithm terminates, we check whether y is
visited or not.

page 3/5

LMo6B1
Techniques de programmation

Chapitre 7
Graphes et structures de données

année 2021/2022
université de Bourgogne

Exercice 7. For the purpose of this exercise let us assume that the labels of the
nodes of a graph are distinct numbers from 1 to n and it is given as an adjacency list.
Implement a function that returns True is there is a path between two vertices x and
y in a graph, or False otherwise.

def is_path(graph, x, y):
n_nodes = len(graph)
visited = [False for _ in range(n_nodes)]
def dfs(v):

visited[v] = True
for u in graph[v]:

......
dfs(x)
return visited[y]

Exercice 8. Now, let us assume that the labels of the nodes are not necessarily
numbers, but can be arbitrary objects, for example, strings. Modify the above code
to make it work for this more general class of graphs. Hint : instead of introducing
an array of True-False for visited vertices, start with an empty set and add vertices
that are visited.

4.Breadth-first search (bfs)

Now we are going to solve a more complicated problem : determine a shortest path
between two given vertices of a graph. In this exercise we are asssuming that each edge
has length 1. This problem cannot be solved with the dfs algorithm, and we need to
go more slowly :
• First, write down the list of all the neighbors of a vertex ;
• Second, add all the neighbors to a queue and process every element in the queue

by recursively using a bfs ;
• For every element in the queue, when exploring its neighbors, don’t jump into

the search immediately, but add the neighbours to the end of the queue.
Before you start implementing the bfs, you need to familiarise yourself with a queue

datatype. Python has a double-ended queue (deque) in a dedicated module, and sup-
ports adding and removing an element at both sides in O(1) operations. Using a queue
instead of a list is important, because removing the first element of the list takes n
operations, where n is the length of the list.

Exercice 9. Familiarise yourself with the deque. By using autocomplete, observe
other available methods.

from collections import deque
Q = deque([1,2,3])
print(Q)
print(Q.popleft())
print(Q.popleft())
print(Q)
Q.append(4)
print(Q)
if Q: print("Q is not empty")
print(Q.popleft())
print(Q.popleft())
if not Q: print("Q is empty")

Exercice 10a. Observe that if the algorithm starts with a node x, then first there
will be processed nodes that are at distance 1 from x, then all the nodes that are at
distance 2, etc. If we keep the current distance during the search, then the first time
we visit the node y we will know the distance between x and y.

Exercice 10b. Implement a Python function that visits all the nodes by using a bfs
procedure and returns the list of visited nodes.

from queue import deque
def connected_component(graph, x):

visited = set([])
Q = deque([x])
while Q:

v = Q.popleft()
visited[v] = True
...... # visit all unvisited neighbors

return visited

Exercice 10c. Modify the above function : add a variable that tracks the current
distance to the initial vertex, and compute the shortest distance between x and y.

Hint : keep the "current" queue for the current distance and the "next" queue for
vertices with distance increased by 1. Once you reach the end of the current queue,
increase the distance by 1 and swap the queues.

page 4/5

LMo6B1
Techniques de programmation

Chapitre 7
Graphes et structures de données

année 2021/2022
université de Bourgogne

def distance(graph, x, y):
visited = set([])
Q_current = deque([x])
Q_next = deque([])
result = 0
while Q_current:

v = Q_current.popleft()
visited[v] = True
...... # visit all unvisited neighbors
if not Q_current:

.... # increase the distance by 1

.... # swap the queues
return result

Exercice 10d. Modify the code of exercise 10b : for each of the visited vertices keep
track of its “parent” in the order of visit. When the vertex y is reached, compose the
path by recursively following the parents, and return the resulting path.

def shortest_path(graph, x, y):
visited = set([])
Q = deque([y])
parents = {} # empty dictionary
parents[y] = y

while Q:
v = Q.popleft()
visited[v] = True
...... # visit all unvisited neighbors
...... # v becomes a parent

if x not in visited:
return None

result = [x]
v = x
while parent[v] != v:

......
return visited

5.Dijkstra’s algorithm
We can apply a very similar bfs-based approach when the edges have a length to

solve the problem of finding the shortest path between the two nodes. Now we store a
graph (again) as a dictionary of nodes, where each node has a dictionary of neighbors.
Each neighbor is represented as a pair, containing the key (the name of the neighbor)
and the value (the length of the edge). Here is an example of graph with distances
between some of the cities of France.

France = {
’Paris’: {’Dijon’: 314, ’Tours’: 239, ’Angoulême’: 452},
’Dijon’: {’Lyon’: 196, ’Paris’: 314},
’Tours’: {’Paris’: 239},
’Angoulême’: {’Paris’: 452},
’Lyon’: {’Dijon’: 196}

}

The new algorithm lauches a bfs on the vertices and keeps the list of visited vertices.
Initially, all the vertices are unvisited. We are solving a more general problem : for a
given vertex x, find the distances towards all the vertices. Initially, all the distances
are set to infinity (1010) and will be updated if a shorter path is found.

Exercice 11. Complete the code.

def distance(graph, x, y):
visited = set([])
dist = {v: 10**10 for v in graph}
Q = deque([x])
while Q:

v = Q.popleft()
for u in graph[v]:

if visited[u]:
continue

dist_to_u = dist[v] + graph[v][u]
if

visited[v] = True
if not visited[y]:

return None
return dist[y]

page 5/5

	I Data structures
	Using lists to represent non-ordered sets
	Binary search tree
	Python's set and dictionary.

	II Excursions on graphs
	A notion of graph
	Representations of graphs
	Depth-first search (dfs)
	Breadth-first search (bfs)
	Dijkstra's algorithm

